

AURA - Automated Radio

AURA is a software suite for community radio stations. All code is Open Source and licensed under AGPL 3.0 [https://www.gnu.org/licenses/agpl-3.0.en.html].

Alpha Status

We are currently in alpha status, so do not use AURA in production yet. If you are an early-stage user or developer, we would be happy about your contributions.

Get an overview on the current release at the Release Notes page.

Guides

	User Guide

	Administration Guide

	Developer Guide

Contribute

	Release Notes

	Bug Reports

	Contributing to AURA

	Contributor Covenant Code of Conduct

	About AURA

Communicate

	Matrix

	Mailinglist

Partners

User Guide

Learn about the UI for radio hosts and programme coordinators.

Table of contents

	Dashboard Overview

	Show Planning

	Programme Planning

	Radio Station Administration

	Studio Clock

	Recurrence Rules

Dashboard Overview

The dashboard is a simple browser application, allowing:

	Hosts to upload and manage their shows.

	Programme Coordinators to manage the radio station and its programme.

Login

Click the Sign In button to open your personal dashboard.

Use the credentials provided by your radio station.

Logout

To sign out click your profile name in the right top. Then click Sign Out.

Navigation Bar

Here you can open tabs to manage:

	Shows

	Media

	Programme Calendar

User Profile

/* tbd */

User Settings

/* tbd */

Switch Language

To change the language click the language picker on the right top. Then choose your preferred language.

Version

When reporting bugs you will be asked about the Dashboard version your are using.

You find the version in the footer of the application.

Show Planning

To manage your show and its episode navigate to the tabs for Show and Media Management.

Show Management

/* tbd */

Media Management

/* tbd */

Programme Planning

The Programme Coordinators home is the calendar tab.

Calendar & Schedule Management

Here you can get a quick overview what the current programme looks like.
This is also the place to create schedules and timeslots based on recurrence rules.

/* tbd */

Creating schedules and timeslots

To create a new timeslot, click the desired area in the calendar. The following dialog opens.

The calendar is able to detect collisions with existing, conflicting timeslots.

To learn more about this behaviour, check out the chapter below.

Updating schedules and timeslots

Click the timeslot to open its dialog.

Deleting schedules and timeslots

Click the timeslot to open its dialog.

On the bottom you find various options to either

	Delete all timeslots and its schedule

	Delete all timeslots in the future

	Delete the current timeslot only.

Timeslot Collision Detection

When using the Dashboard Calendar to create new schedules or timeslots, there is some logic in
place to avoid collisions of conflicting timeslots.

When a collision is detected, the user interface offers you options to solve the conflict.

Single collision, fully overlapping

In this situation an existing and your newly created timeslot are fully overlapping.

Single collision, partly overlapping

Here only some duration of the new timeslot is overlapping an existing one.

Here you have the option to truncate your timeslot or the existing one. Additionally, the
solutions offered in the previous scenarios are offered here too.

Single collision, superset and subset

In that scenario, conflicting timeslots are offered to be split. Again, all possible solutions
from the previous scenarios are valid too.

Radio Station Administration

Programme Coordinators have some additional features for radio management at hand.

Manage Shows

Creating a new show

In order to create a new show, click plus button in the show management tab.

In the dialog enter your show details, select the show type and funding category. Then click OK.

If you are starting from scratch, you might not have any show types and funding categories defined yet.

Learn how to define categorization options in the Manage Metadata chapter below.

Manage Metadata

There are different kinds of metadata which can be used to attribute shows.

Steering Backend Settings

These settings currently can be only adjusted in the Steering backend located at /steering/admin/. In the future there will be a dedicated Radio Station Settings section in Dashboard.

Categories

Categories can be utilized to create sections within the radio programme.

For example Radio ORANGE 94.0 uses categories to group their shows in form of areas of interest on their website.

Funding Categories

Funding categories are used to mark shows as per funding-related and regulartory purposes.

Languages

Languages can be assigned on show level.

Music Focus

Here you can define a list of music genres and assign them to shows.

Topics

This a way to group shows under one theme or special programme (German: “Schwerpunktprogramm”).

Types

Types can be used to define the format of the shows. For example you can mark shows as a feature or talkshow.

The following image gives an idea how Radio Helsinki uses this metadata group on their website.

Manage users and groups

In order to manage users, you have to login to the Steering administration interface.

You can reach that admin interface via /steering/admin/. If your AURA installation is available
under aura.myradio.org the URL to reach that interface is aura.myradio.org/steering/admin/.

Here you can log in with your usual credentials you are using for Dashboard too.

The screenshot outlines the section relevant for managing users and groups.

Listing all available users

To get a list of available users click “Benutzer”.

From here you can click individual users for editing their details. It’s also possible to search or
filter users by different attributes.

Creating new users

To create a new users, click the button “_Benutzer hinzufügen”.

LDAP creates users automatically

Please check back with your IT team, if you are having LDAP in place. When using LDAP there is no
need to create users manually.

There you need to enter a username and password, then click “Sichern und weiter Bearbeiten”.

On the following page you can choose to either create one of these account types:

	Mitarbeiter: Click the checkbox Mitarbeiter-Status

	Administrator: Click the checkbox Administrator-Status

After that click “Sichern”.

Granular permissions

There is also a box where you can assign granular permissions to each user account. At the current
stage many settings have no effect yet. A basic set of role and permission management features
will be provided [https://gitlab.servus.at/aura/aura/-/issues/156] in the coming releases.

/* tbd */

Deactivating and deleting users

The administration panel allows you to delete users by pressing the “Delete” button.

Alternatively, you can also de-select the “active” checkbox. This means the user data is still
available, wherever it’s needed, but the user is not able to login anymore.

Always prefer deactivation over deletion

When in doubt which approach you should choose, always prefer to deactivate the user account.
Deleting a user destroys all the historic data and should only be chosen when you are aware
about the consequences.

Listing user groups

Click “Gruppen” to get a list of available groups.

Groups are usually used to provide different features and permissions per user role.

Typical roles are:

	Superuser or administrator: This group is always available and not listet in this view

	Programme Coordinator: Managers of the radio schedule

	Host: People who are producing radio shows

Editing a user group

To edit the group click the its name in the list.

In that user interface you can change the group’s name or edit the set of permissions for that group.

Granular permissions

At the current stage many permission settings have no effect yet. A basic set of role and permission
management features will be provided [https://gitlab.servus.at/aura/aura/-/issues/156] in the coming
releases.

Adding a user group

To add a group click the button Gruppe hinzufügen.

Please note, that this should be planned with the IT administration, since group are usually carefully
planned and defined within the whole organisation.

LDAP Authentication & Authorization

/* tbd */

Generating reports

Most radios require the generation of annual reports for regulatory purposes.

Reporting feature in Dashboard

At the moment reports have to be compiled by some administrator. In the future Dashboard will
provide a handy button to generate reports [https://gitlab.servus.at/aura/aura/-/issues/178].

Schedule reporting

/* tbd: Mention Steering API to query reports on the radio schedule */

Play-out reporting

To generate playlog reports you can use the playlog endpoint [https://api.aura.radio/engine/#/internal/list_playlog]
of Engine API. These reports have to be manually generated and aggregated for now.

Learn how playlogs are structured in the API Schema for PlayLog [https://api.aura.radio/engine/].

Studio Clock

/* tbd */

Recurrence Rules

The recurrence rules are used to create the repetitions (timeslots) of a scheduled show within the
first and the last date of the schedule, between the start and the end time.

The recurrence rules define the repetition rhythms that a radio station supports and therefore
are different from radio station to radio station.

	Radio Helsinki [https://helsinki.at], supports weekly, bi-weekly and four-weekly shows.

	Radio Orange 94.0 [https://o94.at], supports weekly, bi-weekly and monthly shows.

The following recurrence rules are supported by default if the rrule.json fixture is loaded.

	name

	freq

	interval

	by_set_pos

	count

	by_weekdays

	notes

	once

	0

	

	

	1

	

	[1]

	daily

	3

	

	

	

	

	

	weekly

	2

	1

	

	

	

	[2]

	business days

	2

	1

	

	

	0,1,2,3,4

	

	weekends

	2

	1

	

	

	5,6

	

	bi-weekly

	2

	2

	

	

	

	[2]

	four-weekly

	2

	4

	

	

	

	[2]

	monthly on the first

	1

	1

	1

	

	

	[3]

	monthly on the second

	1

	1

	2

	

	

	[4]

	monthly on the third

	1

	1

	3

	

	

	[5]

	monthly on the fourth

	1

	1

	4

	

	

	[6]

	monthly on the fifth

	1

	1

	5

	

	

	[7]

	monthly on the last

	1

	1

	-1

	

	

	[8]

	bi-monthly on the first

	1

	2

	1

	

	

	[3]

	bi-monthly on the second

	1

	2

	2

	

	

	[4]

	bi-monthly on the third

	1

	2

	3

	

	

	[5]

	bi-monthly on the fourth

	1

	2

	4

	

	

	[6]

	bi-monthly on the fifth

	1

	2

	5

	

	

	[7]

	bi-monthly on the last

	1

	2

	-1

	

	

	[8]

	three-monthly on the first

	1

	3

	1

	

	

	[3]

	three-monthly on the second

	1

	3

	2

	

	

	[4]

	three-monthly on the third

	1

	3

	3

	

	

	[5]

	three-monthly on the fourth

	1

	3

	4

	

	

	[6]

	three-monthly on the fifth

	1

	3

	5

	

	

	[7]

	three-monthly on the last

	1

	3

	-1

	

	

	[8]

	four-monthly on the first

	1

	4

	1

	

	

	[3]

	four-monthly on the second

	1

	4

	2

	

	

	[4]

	four-monthly on the third

	1

	4

	3

	

	

	[5]

	four-monthly on the fourth

	1

	4

	4

	

	

	[6]

	four-monthly on the fifth

	1

	4

	5

	

	

	[7]

	four-monthly on the last

	1

	4

	-1

	

	

	[8]

The actual IDs are not hard-coded in any way in steering, only the parameters of the recurrence
rules are used to create the repetitions.

The only requirement is that the recurrence rule ID in your API call, or the dashboard, matches the
recurrence rules store in the steering database.

If the frequency is either weekly or monthly, the weekday of the first date in the schedule
determines the weekday of the repetition.

[1]
The parameter freq=0 actually describes a yearly frequency, but together with count=1, it
achieves what we want: A single timeslot on the first date of the schedule.

[2]
(1,2,3)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
weekly every Monday if interval=1, biweekly on Monday if interval=2 or four-weekly on Monday if
interval=4.

[3]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the first Monday if interval=1, bi-monthly on the first Monday if interval=2,
three-monthly on the first Monday if interval=3, and four-monthly on the first Monday if
interval=4.

[4]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the second Monday if interval=1, bi-monthly on the second Monday if interval=2,
three-monthly on the second Monday if interval=3, and four-monthly on the second Monday if
interval=4.

[5]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the third Monday if interval=1, bi-monthly on the third Monday if interval=2,
three-monthly on the third Monday if interval=3, and four-monthly on the third Monday if
interval=4.

[6]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the fourth Monday if interval=1, bi-monthly on the fourth Monday if interval=2,
three-monthly on the fourth Monday if interval=3, and four-monthly on the fourth Monday if
interval=4.

[7]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the fifth Monday if interval=1, bi-monthly on the fifth Monday if interval=2,
three-monthly on the fifth Monday if interval=3, and four-monthly on the fifth Monday if
interval=4.

[8]
(1,2,3,4)
If the first date of the schedule is “2023-01-02” (a Monday), the resulting recurrence is
monthly on the last Monday if interval=1, bi-monthly on the last Monday if interval=2,
three-monthly on the last Monday if interval=3, and four-monthly on the last Monday if
interval=4.

Administration Guide

Learn how to make and keep AURA playful.

Table of contents

	Overview & Features

	Migration & Integration Plan

	Deployment Scenarios

	Deployment Preparations

	Deployment Bundles

	AURA Web

	AURA Playout

	AURA Recorder

	Maintenance and updates

Overview & Features

The following diagram outlines the main elements of AURA.

The naming scheme

Automated Radio, AutoRadio, AuRa or AURA, follows an “Automobile-naming-scheme”. All the components are named after some crucial parts of a car:

	Steering: This is the single source of thruth, holding all the radio data, hence steering some radio’s broadcast.

	Tank: Just spleen without steam. That’s where your shows, tunes and recordings are managed. Fuelling your broadcast with materials.

	Dashboard: Observe and control what’s happening. That’s the backend user interface of your radio with individual views for hosts and programme coordinators.

	Engine: The playout server allowing you to broadcast via FM and web audio streams. Includes silence detection and optional recording options.

	Play: Every car has some fancy Auto Radio Player. And every radio station has the need for some modern frontend experience. Play is a library of web components. Making web development a breeze. Just like playing with blocks of Lego.

[image: AURA Steering]
[image: AURA Dashboard]
[image: AURA Tank]
[image: AURA Engine]
[image: AURA Play]

Features

The aforementioned naming scheme is used as a basis for name-spacing individual services.

Here you get an overview of the features of the provided services.

Find details on additional functionality on the bundle documentation pages or in the configuration files of individual services.

Steering

/* to be defined */

Dashboard

/* to be defined */

Dashboard Clock

Web Application providing a Studio Clock.

/* more to be defined */

Tank

/* to be defined */

Tank Cut & Glue

/* to be defined */

Engine

Scheduling and control for the playout.

	Scheduler: Automatically broadcast your radio programme (see AURA Dashboard [https://gitlab.servus.at/aura/dashboard] for a user interface to do scheduling)

	Autonomous playout: Schedule information is pulled from Steering into a local cache. This way the playout keeps working, even when the network connectivity might be lost.

	Versatile Playlists: Playlists can contain different content types, such as audio files, audio streams and line in channels of you audio interface.

	Default Playlists: Define playlists on show and schedule level, in addition to any timeslot specific playlists. This way you always have an playlist assigned, when some host forgets about scheduling a specific programme.

	Heartbeat Monitoring: Frequently send pulse to a monitoring server, ensuring your schedule and playout server is up and running.

/* more to be defined */

Engine Core

The playout server based on Liquidsoap.

	Multi-channel input: Play audio from various sources including queues, streams and line-in from the audio interface

	Multi-channel output: Output to line out or audio streams

	Icecast connectivity: Stream to an Icecast Server, provide different encoding formats and bitrates

	Auto DJ triggered by Silence Detector: Play fallback audio triggered by a silence detector to avoid Dead Air. Play randomized music from a folder or M3U playlist.

	Metadata handling: Send information on playlogs via REST calls to external services like Engine API.

	ReplayGain: Normalization done using passed ReplayGain meta data.

Engine API

An OpenAPI 3 service to store and retrieve Engine data.

/* more to be defined */

Engine Recorder

A simple but powerful recorder.

	Bulk Recorder: Record blocks of audio for archiving, audit-logging or further processing

	Sync to archive: Periodically synchronize recordings to a defined destination

Migration & Integration Plan

Before getting started you need to carefully plan how you want to fit AURA into your
infrastructure.

Check out the provided Deployment Scenarios on ideas for
integration AURA into your ecosystem.

Individual test & production instances

To keep your radio infrastructure up-to-date, AURA is meant to provide frequent releases.

In order to keep this process free of glitches, it’s good to gain experience in maintaining
AURA on a test environment.

But also after moving AURA to production it is highly recommended to have a staging- or
test-instance, where new releases are deployed before actually updating the production servers.

Migration Plan

Rome wasn’t build in a day. And a radio software ecosystem isn’t migrated in one day either.

Make a plan with different stages. Decide which parts you want to migrate at a certain stage.

Possible stages are:

	Migrate and continuously synchronize scheduling and show data

	Integrate your website and other frontends with AURA

	Test run the actual play-out

	Make the switch to the new play-out system

Migration Tools

Several radios are building tools and scripts for migration. Besides offering Best Practices,
we can also share some code for a sample migration service, if that’s what you need.

Let’s talk in Matrix [https://matrix.aura.radio].

Deployment Scenarios

AURA comes with two Docker Compose bundles:

	AURA Web: Combines all essential containers required for the web-facing elements.

	AURA Playout: Everything related to scheduling, play-out and (optionally) recording.

	AURA Record: A standalone recorder and archive synchronisation.

There are also additional, individual Docker containers available to further extend the provided features.

The following network diagrams outline ideas on deployment scenarios.

Single Instance

This is the most simple scenario for setting things up, as all services reside on the same machine. The downsite is, that any hardware issues or the need for restarting the server has an immediate effect on the full array of services.

Advanced

Here we utilize at least two machines for services: One for all web-facing applications (AURA Web), the other related to scheduling and play-out (AURA Playout). This is the most verstatile approach between simplicity and maintainability, since your play-out will still be functional, while shutting down the web server for updates.

High Availability

That’s the most sophisticated approach where your radio should never ever go down. But it’s also the most tricky one, which needs careful testing and more valves to maintain.

Future scenario

Please note that this is a future scenario. Not all required service are available yet.

Deployment Preparations

Requirements

	Docker Engine 23.0.0 or later [https://docs.docker.com/engine/install/]

	Docker Compose 2.15.1 or later [https://docs.docker.com/compose/install/]

	Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/]

	make [https://www.gnu.org/software/make/]

Setting up the home and aura user

Clone the aura repository to the server(s) you want to deploy AURA Web or AURA Playout at.

We recommend using /opt/aura as your home for the AURA installation.

sudo git clone https://gitlab.servus.at/aura/aura.git /opt/aura

Next, move to that directory and create the aura user. This user is used for running all services.

make aura-user.add

The directory under /opt/aura is now owned by aura:aura.

User permissions

All resources will be owned by the user aura, hence we recommend performing all subsequent commands
as this user or to add the current user to the aura group.

Selecting the release

First check for available releases.

$ git tag
1.0.0-alpha1
1.0.0-alpha2
1.0.0-alpha3

This command returns a list of all tags corresponding to the available releases.
Alternatively you can take a look at releases.aura.radio [https://releases.aura.radio].

To learn about changes between releases, consult the Release Notes.

Then switch to the release you’d like to use.

git checkout tags/<release-version>

Replace <release_version> with one of the versions listed above, like 1.0.0-alpha1.

git checkout tags/1.0.0-alpha1

Latest, unreleased state on the main branch

In case you want deploy the current development state, just take the latest commit on the main
branch. That’s the state which is checked out by default. While we try to keep the main branch
as stable as possible, we cannot guarantee it being functional at all times. So please use it at
your own risk.

Setting up the Audio Store

The Audio Store is a folder which is utilized by Tank and Engine to exchange audio files.

Assuming both, Engine and Tank are hosted on different machines, audio folders must by shared
using some network share.

In case you are hosting Engine and Tank on the same machine, you can skip this step. Just
think about pointing the settings the relevant audio directories, or create a symlink to do
so behind the curtains.

By default the audio store is located in /opt/aura/audio. There are following subdirectories
expected:

	source: Holding all audio files from the media asset repository. Written by Tank and read by Engine.

	fallback: Populate this folder with audio files to be played randomly, in cases where nothing is scheduled.

	playlist: Used for M3U audio playlists.

	recordings: The recorder stores its recorded blocks here.

	import: To import audio files into Tank via the filesystem, place them here.

Share Type

Then, there’s the question how the share is managed. Feasible options include:

	NFS [https://en.wikipedia.org/wiki/Network_File_System]

	SSHFS [https://en.wikipedia.org/wiki/SSHFS]

	Gluster [https://www.gluster.org/]

Please evaluate for yourself what the most failsafe solution is. The next chapter outlines pro
and cons of different scenarios.

Share Location

You have following options where your share can be located:

	Engine and all other AURA components (Tank, Dashboard, Steering) are running on the same instance.
This is the most simple solution, as Engine and Tank can share the same directory locally. But
this scenario requires some more sophisticated tuning of the system resources to avoid e.g.
some overload of multiple Uploads in Tank may affect the performance of engine. You can
eliminate this risk by setting CPU and memory limits for Steering, Dashboard and Tank using
Docker or systemd-cgroups. A disadvantage here is the case of maintenance of system reboot.
This would mean that all components are offline at once.

	Physical directory where the Engine lives, mounted to Tank. This may cause an issue with
the mount, when the network connection to Engine is unavailable or the instance is rebooting.

	Physical directory where the Tank lives, mounted to Engine. This may cause an issue with
the mount, when the network connection to Tank is unavailable or the instance is rebooting.

	Central Data Store or Storage Box which is mountet to Engine and Tank. In this case a
downtime of the store make both, Engine and Tank dysfunctional.

	Replicated storage solution using Gluster [https://www.gluster.org/], both Engine and Tank have their virtual audio directory mounted.
That’s the ideal approach, because if any of the instances is down, the other has all the data
available.

In any case, you should think about some backup solution involving this directory.

Advanced Configuration

In the following steps, you will be advised to copy the provided sample.env file to .env. In
most common setup scenarios all configuration done in such .env file is sufficient.

For some more advanced setups or debug purposes, there are also sample configuration files for each
service under /opt/aura/config/services/sample-config available. To overwrite any service
configuration, simply copy its configuration file to the parent services folder.

Only use these overrides if you are an advanced user, or are advised to do so.

Deployment

AURA can be deployed using Docker and Docker Compose, allowing custom-tailored orchestration.

In general we recommend the Docker Compose variant.

Deployment Bundles

Same as a car has fixed and moving parts, AURA likewise has parts which are fundamental and parts which are optional.

In order to keep administrators life simple, we have defined component spaces reflecting to most common deployments:

	AURA Web: Contains all the web facing services, including digital asset management

	AURA Playout: Contains all things required for scheduling & broadcasting

	AURA Record: Record audio and periodical sync to archive

These spaces are realized as of Docker Compose [https://docs.docker.com/compose/] bundles.

AURA Web

	Service

	Required

	Description

	steering

	✅

	Single-source of truth, holding all radio, show, host
and scheduling data

	tank

	✅

	Upload, download, normalization and media asset management

	dashboard

	✅

	Backend user interface

	dashboard-clock

	

	Studio clock

	play

	

	A library for building frontends based on web components

The required services are needed for minimal functionality.

AURA Playout

	Service

	Required

	Description

	engine

	✅

	Control and scheduling for the play-out

	engine-core

	✅

	Play-out Engine

	engine-api

	

	API for playlogs and track service

	engine-recorder

	

	Record audio blocks, including archiving

The required services are needed for minimal functionality.

AURA Recorder

	Service

	Required

	Description

	engine-recorder

	✅

	Record audio blocks, including archive sync

The required services are needed for minimal functionality.

AURA Web

Deploy AURA Web

All required files can be found under /opt/aura/config/aura-web. For the described commands change to that directory.

Copy the sample.env to .env and set all values as needed.

Update the configuration file

Update at least following environment variables in the .env file:

	AURA_AUDIO_STORE_SOURCE: The location where Tank is storing audio sources. It defaults to aura/audio/source.

	AURA_TANK_ENGINE_PASSWORD: The password should match the one you’ll be configuring in AURA Playout. Avoid using the default one.

	AURA_HOST_NAME: Set the host or domain name where the service are used from. See below why to avoid localhost.

	AURA_HOST_PROTO: Defaults to https. Set to http if you are running locally.

	AURA_HOST_CERTBOT_ENABLE: Enable in production in order to get TLS certificates automatically.

	AURA_HOST_CERTBOT_EMAIL: Set a valid email for certbot.

Defining the host for production setups

You can use a public domain name or any locally defined hostname. For example by configuring
aura.local in /etc/hosts. Keep in mind to use a LAN IP though. Using localhost or 127.0.0.1
for the production setup is not supported. Here you’d need to make adjustments on your own or use
the dev-setup.

Changing the host

Any update of AURA_HOST_NAME in your .env file is not reflected in the actual configuration.
In such cases you either need to manually update the relevant OIDC client database tables, or you
simple create new OIDC client IDs in the configuration. After that you can delete any old OIDC
clients via the Steering admin interface $AURA_HOST_NAME/steering/admin/oidc_provider/.

In case you have deployed AURA Playout to a different instance, also set the value
for AURA_ENGINE_API_INTERNAL_URL.

Initialize the Steering container:

docker compose run --rm steering initialize

Start the services with Docker Compose:

docker compose up -d

We use named volumes for the data-volumes. That way all data will live in your docker-directory.

This deployment will make AURA Web reachable in the following way:

	Dashboard is reachable directly under the domain given as $AURA_HOST_NAME

	Steering is reachable under /steering

	Tank is reachable under /tank

	Track Service endpoints track service will be reachable under /engine/api/v1/trackservice, if engine-api is running. Check the Engine API specification [https://api.aura.radio/engine/] for details.

	Icecast: If you enabled the optional Icecast server for the reverse proxy it will be reachable under /icecast. If you only enabled it, it will be reachable under port 8000 of the machine running AURA Web.

	Dashboard Clock will be reachable from the configured network under the configured port. If you enabled it for the reverse-proxy, it will be reachable under /clock.

Create sample data using fixtures

Fixtures are required for now

Currently you need to install the fixtures in order to make Aura Web working correctly. We will
change this in a future release.

In case you want to setup the fixtures with initial sample data, you need to bash into the
running container via

docker compose exec steering bash

and then install the program fixtures by using the command

poetry run ./manage.py loaddata fixtures/program/*.json

Check the logs

Now everything should be up and running. You can check the logs with

docker compose logs -f --tail=100 <service-name>

See Maintenance and updates [https://docs.aura.radio/en/latest/administration/maintain-and-update.html] for more Information.

NGINX and Reverse Proxy

In the AURA Web setup all services are made reachable behind a reverse Proxy. For this NGINX is
used. Here we also offer support for using SSL via Let’s Encrypt.

Be aware that the docker-compose by default opens ports 80 and 443. If you want to run
AURA Web behind a reverse proxy on a different machine, you can just use port 80 of this
machine. At the moment running another reverse proxy on the same machine isn’t supported with
this setup, since there’s no possibility to close ports with an override.

If you wish to not use the NGINX whatsoever, you can override the docker-compose with the
following content:

services:
 nginx:
 deploy:
 replicas: 0

This disables the internal NGINX. Keep in mind the nginx does a lot of heavy lifting to handle
all redirections and URL rewrites correctly, which you will then need to handle manually.

If you wish to expand the nginx-config you can put further configs into the custom-folder.
Keep in mind the configs need to end on .conf.

Extending the settings for Steering

If you need to extend the settings for steering, you can first make the
necessary adjustments to the Docker Compose setup in a
docker-compose.override.yml file.

docker-compose.override.yaml
version: "3.4"

services:

 steering:
 environment:
 DJANGO_SETTINGS_MODULE: steering.production_settings
 volumes:
 - ./production_settings.py:/steering/steering/production_settings.py

This will point Django to the new settings module and mount the local
production_settings.py file into the steering container.

Then, you need to create a new production_settings.py file with all that you
need.

Refer to steering/sample_settings.py in the steering
repository [https://gitlab.servus.at/aura/steering] on how to load and
override the settings, and to the Settings
Reference [https://docs.djangoproject.com/en/3.2/ref/settings/] for the
available Django settings.

AURA Playout

[image: AURA Engine]

Deploy AURA Playout

All required files can be found under config/aura-playout. For the described commands change
to that directory.

Then copy the sample.env to .env and set all values as needed.

Update the configuration file

Update at least following environment variables in the .env file:

	AURA_TANK_ENGINE_PASSWORD: The password should match the one configured in AURA Web. Avoid using the default one.

	AURA_AUDIO_STORE_SOURCE: The location where Tank is storing audio sources. It defaults to audio/source. It should match the one set in AURA Web.

	AURA_AUDIO_STORE_PLAYLIST: The location where M3U playlists are provided. This is optional and defaults to audio/playlist.

	AURA_AUDIO_STORE_FALLBACK: The location where fallback audio is retrieved from. Such audio is played when nothing is scheduled. It defaults to audio/fallback.

Now populate the AURA_AUDIO_STORE_FALLBACK location with some audio files.

Configure the audio interface

AURA Playout requires you to have a ALSA compatible audio interface.

Disable PulseAudio server

PulseAudio introduces huge delays when controlling the play-out. In order to experience more
exact timings in scheduling ensure PulseAudio is disabled.

Now create the file config/aura-playout/asound.conf for the ALSA configuration. The configuration
should hold custom PCM device named pcm.aura_engine.

There is a sample ALSA configuration sample.asound.conf in the same directory. For more information about the ALSA configuration visit the official documentation [https://alsa.opensrc.org/Asoundrc].

Your ALSA Device

To find the name and even more information about your audio device you can use aplay -L and aplay -D <_audio_device> –dump-hw-params`. See our FAQ [https://docs.aura.radio/en/latest/administration/aura-playout.html#faq] for more information.

Start the services with Docker Compose:

docker compose up -d

After successful start-up, you should hear some music playing already.

Latency issues with live analog audio

If you are facing latency issues with Engine Core while playing live from the analog audio source, we
suggest you try to deploy Engine Core natively. To do so you’ll need to comment out the
COMPOSE_PROFILES variable in you .env file. Then, follow the documentation for a
native installation of Engine Core [https://gitlab.servus.at/aura/engine-core#prerequisites].
We hope to solve the Docker latency issue in one of the coming releases.

Playout channel routing

Playout channels are routed this way:

/* FIXME: render Mermaid diagram */

graph TD
 iq0[Queue A] -->|in_queue_0| mix
 iq1[Queue B] -->|in_queue_1| mix
 is0[Stream A] -->|in_stream_0| mix
 is1[Stream B] -->|in_stream_1| mix
 il0[Line In 1-5] -->|in_line_0..4| mix
 ff[Fallback Folder] -->|fallback_folder| which_fallback
 fpls[Fallback Playlist] -->|fallback_playlist| which_fallback
 mix[" Mixer "] --> silence_detector
 which_fallback{or} -->| | silence_detector{Silence Detector}
 silence_detector -->| | output[Output]
 output --> |output.alsa| C[fa:fa-play Audio Interface]
 output --> |output.icecast| D[fa:fa-play Icecast]

Configuring playout

Configure the audio interface

By default only audio output is enabled using the systems default ALSA device.

Ensure PulseAudio server is disabled

You get the most glitch-free experience when using ALSA [https://www.alsa-project.org/] devices directly. To avoid any play-out malfunctions ensure that no PulseAudio server is running.

To check if PulseAudio is started, run pactl list. If this command returns an error, PulseAudio is deactivated.

If you want to choose a different device, edit the configuration file and set a value for output_device_0.

It’s also possible to set ALSA hardware device IDs like hw:0,0. Check the FAQ below on how to retrieve available audio device IDs.

Recommended audio device configuration

For better I/O performance it’s recommended to create an ALSA PCM device named pcm.aura_engine. You can use the sample configuration
sample.asoundrc [https://gitlab.servus.at/aura/engine-core/-/blob/main/config/sample.asoundrc] as a basis for creating such device. Consult the ALSA documentation on details. After creating such device verify its properly assigned in the configuration file as output_device_0="pcm.aura_engine".

Optional deploy playout with Aura-Recorder

By default the Docker-Compose will not deploy the the Aura-Recorder.
If you want to deploy the Aura-Recorder on the same Host start the compose service with

docker compose --profile engine-recorder-enabled up -d

Configure the audio source locations

Engine Core is requires different audio sources in order to perform the playout.

Configure the location for fallback music

By default fallback audio is retrieved from the fallback folder. A local folder for any
emergency playback, also called Station Fallback.

audio_fallback_folder="audio/fallback/"

All audio files inside are played in a randomized order, in situations where nothing is scheduled.
The folder is being watched for changes. So you can add/remove audio on the fly.

This fallback feature is enabled by default, but can be turned off in via the configuration.

Instead of the fallback folder you can use a playlist in the playlist folder for fallback scenarios.
Its default file name is station-fallback-playlist.m3u and located in:

audio_playlist_folder="audio/playlist"

Also this playlist is being watched for changes. You’ll need to set the configuration option
fallback_type="playlist" to enable this instead of the fallback folder.

Configure the audio source folder

This is the location for actually scheduled audio files. They are provided by Tank.

audio_source_folder="audio/source"

If you are running all AURA services on a single instance you should be fine with just creating a
symbolic link to the relevant Tank folder (ln -s $TANK_STORE_PATH $PLAYOUT_AUDIO_SOURCE). But in some
distributed and redundant production scenario [https://docs.aura.radio/en/latest/administration/deployment-scenarios.html]
you might think about more advanced options on how to sync your audio files between machines.

Features and how they work

Scheduler

Engine provide a scheduling functionality by polling external API endpoints frequently. Those API endpoints are provided by Steering [https://gitlab.servus.at/aura/steering] to retrieve schedule information and Tank [https://gitlab.servus.at/aura/tank] to retrieve playlist information. To define your schedule you’ll also need AURA Dashboard [https://gitlab.servus.at/aura/dashboard] which is an elegent web user interface to manage your shows, playlists and schedules.

Ideally any audio is scheduled some time before the actual, planned playout to avoid timing issues with buffering and preloading. Nonetheless, playlists can also be scheduled after a given calendar timeslot has started already. In such case the playout starts as soon it is preloaded.

If for some reason the playout is corrupted, stopped or too silent to make any sense, then this triggers a fallback using the silence detector (see chapter below).

Note: If you delete any existing timeslot in Dashboard/Steering this is only reflected in Engine until the start of the scheduling window. The scheduling window is defined by the start of the timeslot minus a configured offset in seconds (compare your Engine configuration).

Versatile playlists

It is possible to schedules playlists with music or pre-recorded shows stored on the file system, via external streams or live from an line input in the studio. All types of sources can be mixed in a single playlist.

The switching between types of audio source is handled automatically, with configured fadings applied.

Note: Any live sources or streams not specifying a length property, are automatically expanded to the left duration of the timeslot.

Default playlists

While a timeslot can have a specific playlist assigned, it is also possible to define default playlists
for schedules and shows:

	Default Schedule Playlist: This playlist is defined on the level of some recurrence rules (Schedule).
In case the timeslot doesn’t have any specific playlist assigned, this playlist is broadcasted.

	Default Show Playlist: This playlist can be assigned to some show. If neither the specific timeslot
playlist nor the default schedule playlist is specified the default show playlist is broadcasted.

If none of these playlists have been specified the Auto DJ feature of Engine Core takes over (optional).

Heartbeat Monitoring

Instead of checking all status properties, the Heartbeat only validates the vital ones required to run the engine. If all of those are valid, a network socket request is sent to a defined server. This heartbeat is sent continuously based on the configured heartbeat_frequency. The service receiving this heartbeat ticks can decide what to do with that information. One scenario could be switching to another Engine instance or any other custom failover scenario. Under engine/contrib/heartbeat-monitor you’ll find some sample application digesting these heartbeat signals.

FAQ

I am using the default audio device. How can I set another default device?

You can check the systems default audio hardware by executing aplay -L on the command line.

You can set the default device in /etc/asound.conf or ~/asoundrc.

How can I retrieve available ALSA audio devices

	To see only the physically available sound cards: cat /proc/asound/cards

	To see sound cards with all additional devices (e.g. HDMI): aplay -l

	To see devices configured by ALSA with additional plugins: aplay -L

	The default devices that should be used: aplay -L | grep default

I have configured an audio device but still hear no sound (native installation)

To test if you device is able to output audio at all, independently from Engine Core, try executing speaker-test. Also checkout out the -D argument to test specific devices. If you system doesn’t provide speaker-test you have to install or use your preferred way of testing also audio.

I have configured an audio device but still hear no sound (Docker installation)

If you are running Engine Core using Docker, run the aforementioned speaker-test from within your docker container by perform following:

	Bash into the container using docker exec -it aura-engine-core bash

	Now run speaker-test. It that’s working, you now know that your audio device is at least available from within Docker and you’ll need to further check your Liquidsoap device configuration.

	Next you can run liquidsoap tests/test_alsa_default.liq. This is a basic script which tries to play the supplied MP3 using the default ALSA device.

I’m getting clock.wallclock_alsa:2 Error when starting output lineout: Failure(“Error while setting open_pcm: No such file or directory”)!**

Assure you have set the correct device ID. To do so read the paragraph above. Review the audio interface configuration settings and verify if the default settings input_device_0 and output_device_0 are valid device IDs.

In case your are not running Engine Core within Docker, also check if your executing user (è.g. engineuser) belongs to the group audio.

How to solve ‘Error when starting output output_lineout_0: Failure(“Error while setting open_pcm: Device or resource busy”)!’?

You probably have set a wrong or occupied device ID. The device could be reserved by another software using the ALSA sound system. Or you might be accessing a device using ALSA which is already assigned to the Pulse Audio sound system. Here it could help to remove the device from PulseAudio [https://jamielinux.com/blog/tell-pulseaudio-to-ignore-a-usb-device-using-udev/] before accessing it.

How to avoid stutter, hangs, artifacts or in general glitchy sound?

This can have various reasons, but first of all it’s good to check the engine-core.log file. Also check your CPU usage. Lastly review the settings of your audio device.

Incorrect ALSA buffer settings: If the ALSA settings provided by your system are not working cleanly the Engine Core settings provide to option to override parameters such as alsa_buffer. The correct settings are individual to the used soundcard but in general this is a tricky topic and deeper ALSA knowledge is very helpful.

These problems occur while having Icecast streaming enabled: Try to reduce the quality of the stream, especially when you are experiencing hangs on the stream. Check your Icecast connection. Is it up and running? Maybe there is some authentication issue or an Icecast limitation for max clients.

The hardware is hitting its limits: Also check the relevant logs and the system utilization. Are there other processes using up the machines resources? You might even be hitting the performance limit of your hardware. Maybe using a realtime linux kernel could help too.

AURA Recorder

[image: AURA Engine]

Deploy AURA Recorder

All required files can be found under config/aura-recorder. For the described commands change to that directory. Make sure to follow the preparation steps [https://docs.aura.radio/en/latest/administration/deployment-preparation.html] to add the user: aura first.

Then copy the sample.env to .env and set all values as needed.

su aura -c "cp sample.env .env"

Update the configuration file

Update at least following environment variables in the .env file:

	AURA_RECORDER_AUDIO_DEVICE: The audio device from which the audio will be recorded. It is also possible to set a stream.

	AURA_RECORDER_AUDIO_STORE_HOST: The location where the recorder saves all recordings.

Make sure that the user aura can write to AURA_RECORDER_AUDIO_STORE_HOST.

source .env
sudo mkdir -p "${AURA_RECORDER_AUDIO_STORE_HOST}/recordings/block"
sudo chown -R aura:aura "${AURA_RECORDER_AUDIO_STORE_HOST}"

Using a ALSA audio device

Currently AURA Recorder only supports ALSA devices or audio streams. When using a audio interface, make sure to provide the sample format in the override config [https://gitlab.servus.at/aura/aura/-/blob/main/config/services/engine-recorder.yaml]. For future releases we plan to read the sample rate directly from the audio device.

Start the services with Docker Compose:

docker compose up -d

After successful start-up, you should see the AURA_RECORDER_AUDIO_STORE_HOST get populated.

Maintenance and updates

Before doing an update, check the Release Notes page, to learn what has been
changed.

Update Containers

For updates of the components containers:

	Pull the aura repository:

git pull

and check out the new release:

git checkout tags/<release-version>

	Compare your .env file with the (now updated) sample.env and change your .env file
accordingly. Take special note of new versions of the components. For aura-playout: If you use
the docker container of engine-core you also want to compare the sample.engine-core.ini with
your engine-core.ini

	For the components having new versions: Check the release notes for changes you might need to take into account.

	Pull the new images from Docker Hub:

docker compose pull

	Recreate the containers:

docker compose up -d

Update the database by applying migrations

Manual steps for updating of the databases should only be necessary for steering. The other
databases should be updated automatically by their services.

The Django migration scripts for steering are created during development and only need to be
applied by the service to the database. This has to be done after updating the service.

To display any available migration run:

docker compose run --rm steering showmigrations

To apply the migrations simply run:

docker compose run --rm steering migrate

Create OpenID Connect clients

If you need to create a new or additional OpenID Connect client for
dashboard, you can update AURA_DASHBOARD_OIDC_CLIENT_ID in your .env and
run:

$ docker compose run --rm steering create_oidc_client.dashboard

If you need to create a new or additional OpenID Connect client for tank, you
can update AURA_TANK_OIDC_CLIENT_ID in your .env and run:

$ docker compose run --rm steering create_oidc_client.tank

These commands will fail if the client_id is duplicated.

Upgrade the database version

The postgres-version is saved in the POSTGRES_VERSION variable. When upgrading Postgres, it is
not sufficient to change this version though. New major versions of Postgres cannot read the
databases created by older major versions. The data has to be exported from a running instance
of the old version and imported by the new version.

Thankfully, there is a Docker container available to automate this process. You can use the
following snippet to upgrade your database in the volume aura-web_steering_db_data, keeping a
backup of the old version in aura-web_steering_db_data_old:

Replace "9.4" and "11" with the versions you are migrating between.
export OLD_POSTGRES=9.4
export NEW_POSTGRES=11
doker-compose stop steering-postgres
docker volume create aura-web_steering_db_data_new
docker run --rm \
 -v aura-web_steering_db_data:/var/lib/postgresql/${OLD_POSTGRES}/data \
 -v aura-web_steering_db_data_new:/var/lib/postgresql/${NEW_POSTGRES}/data \
 tianon/postgres-upgrade:${OLD_POSTGRES}-to-${NEW_POSTGRES}
Add back the access control rule that doesn't survive the upgrade
docker run --rm -it -v aura-web_steering_db_data_new:/data alpine ash -c "echo 'host all all all trust' | tee -a /data/pg_hba.conf
Swap over to the new database
docker volume create aura-web_steering_db_data_old
docker run --rm -it -v aura-web_steering_db_data:/from -v aura-web_steering_db_data_old:/to alpine ash -c "cd /from ; mv . /to"
docker run --rm -it -v aura-web_steering_db_data_new:/from -v aura-web_steering_db_data:/to alpine ash -c "cd /from ; mv . /to"
docker volume rm aura-web_steering_db_data_new

Please double check all values and that your local setup matches this. Of course this needs to
be done for all postgres-dbs.

Overriding the docker-compose.yml

If you need to make changes to the docker-compose.yml you can create a
docker-compose.override.yml and make the necessary adjustments in there. That way, your
adjustments won’t create conflicts.

Useful docker and docker compose commands

Here you can find the official documentation of docker compose commands [https://docs.docker.com/compose/reference/].

Generally the commands are to be called from the folder in which the respective
docker-compose.yml is in.

Below you find some useful examples.

List running services

To get a list of services currently running use:

docker ps

Show logs

To see the current logs of the containers running with docker compose:

docker compose logs -f --tail=100 <service-name>

(Re)Create and start the containers

docker compose up -d

Starts all containers of services defined in the docker-compose.yml file of the folder the
command is called from (and creates them if they didn’t exist before). If services, that are
already running and were changed in any way, Docker Compose re-creates them.

The parameter “-d” means it starts them as daemons in the background.

Stop and remove services

If you wish to delete your deployment, all you need to do is shutting it down:

docker compose down

If you also wish to delete all data, including the Docker Volumes, you can run the following
command:

docker compose down -v

Pull images from Docker Hub

To pull the newest images from Docker Hub:

docker compose pull

Delete unused images

Since Docker does not automatically delete old images it can happen, that too much space is used
by them on the server. To delete images of containers not currently running, use:

docker system prune

This will not delete the Docker volumes (where the databases and therefore the persistent
data lives).

Log into a container

To bash into an already running container execute

docker compose exec -it steering bash

To log into the database of a PostgreSQL container you can run

docker compose exec steering-postgres psql -U steering

Deploy other Docker Images

If you prefer some individual deployment scenario, you can also run single Docker Images.

These Docker images are hosted on https://hub.docker.com/u/autoradio.

Work in progress

These images are not yet fully documented. We will update the documentation on Docker Hub as we
move along. If you need such image please consult the documentation and Makefiles in the
relevant repositories.

Developer Guide

This guide holds general information for AURA architecture and development.

Table of contents

	Architecture

	Development

	Release Management

	Misc

Architecture

Find details on the AURA Architecture here.

Architecural principals

Some of our core organisational and architectural requirements for AURA are:

	modular architecture: the whole suite should be made up of modular components which could be exchanged with other custom components

	transparent API: every component shall provide a well-documented API through which other components can interact with it, ideally as a REST API.

	reuse of existing components: we do not want to reinvent the wheel. Several stations already developed single components as free software and we can adapt and build on those

	modern frameworks: we do not code from scratch but use modern application development frameworks which provide maintainability as well as security

Outdated diagram

The following component diagram doesn’t reflect all the details of the current implementation. It will be updated at some point.

[image: Diagram illustrating the AuRa components]

Diagrams

Network Diagram

Check out the provided Deployment Scenarios on ideas how the individual projects can be integrated within your infrastructure.

Data Model

Simplified Data Model

This data model is an abstraction of the main entities used by Steering and Tank.

Steering Data Model

This is almost the complete picture of the Steering data model.

Conflict Resolution for the scheduling timetable

Check out the Conflict Resolution Documentation page.

Development

Coding Conventions and Guidelines

Here you find an overview of our conventions on coding and version control.

Also have a look at our Contribution Guidelines.

git

	We use GitHub Flow [https://docs.github.com/en/get-started/quickstart/github-flow]

	Keep the main branch stable, as releases are derived from it. When contributing a breaking change, like API changes, inform the team about the intended merge.

	When contributing code, create a Merge Request, and assign the repository maintainer for review. Do not squash commits when performing the merge.

	We write changelogs in the keep a changelog [https://keepachangelog.com/] format. Remind yourself to update the CHANGELOG.md before committing code. Remember that changelogs are meant for humans and should reflect the end-user value. When doing a release we use the changelog as our Release Notes. When providing code via a Merge Request the maintainer will remind you to update the changelog too :-)

	Avoid crunching commits and rebasing; set git config pull.rebase false to use recursive as your default merge strategy

	We use conventional commits [https://www.conventionalcommits.org/]

	Mention related ticket IDs where applicable, like #123 or play#123 when cross-referencing between repositories. For example you can close tickets by using closes #123.

	Use atomic commits [https://www.freshconsulting.com/insights/blog/atomic-commits/]

Code

Python

We use Black [https://github.com/psf/black/] with default settings, enforced by Flake8 [https://flake8.pycqa.org/en/latest/].

We use the default settings, except for a maximal line-length of 99 characters. If you are using
a Black IDE integration, think about adapting its settings.

For code documentation we use the Flake8 Docstrings [https://pypi.org/project/flake8-docstrings/] extension with Google-style formatting [https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings] enabled (docstring-convention=google).

ECMAScript and TypeScript

We use ESLint [https://eslint.org/] as the common Linter. When your code is based on VueJS [https://vuejs.org/] or Svelte [https://svelte.dev/], install the official IDE extensions. These extensions provide additional style checks and auto-formatting options.

API

We utilize an API-first approach. APIs are specified using OpenAPI 3. Find the API at api.aura.radio [https://api.aura.radio].

All the main aspects are documented within the spec. In some cases you may need some additional documentation in the docs. For example the API: Schedules and conflict resolution document can be found in “Developer Guide -> Misc”.

API-first

At the moment only Engine API [https://api.aura.radio/engine] is based on API-first. Steering API [https://api.aura.radio/steering] and Tank API [https://api.aura.radio/tank] are momentarily generated out of the code base.

Testing

When providing new features or refactoring code, please provide test cases. We do not expect
100% test coverage but are aiming for having the most important usage scenarios covered by
automated CI/CD test suites.

Auto Deployment

For all components, feature branches automatically build Docker containers and push them to the gitlab-registry [https://gitlab.servus.at/groups/aura/-/container_registries].
To roll out new features, the Compose-File [https://gitlab.servus.at/aura/aura/-/blob/main/config/aura-web/docker-compose.auto-deployment.yml],
must be set to the corresponding tag of the feature branch.
After the commit, the version will be rolled out automatically.

Documentation

The general documentation is located in aura/docs and hosted at docs.aura.radio [https://docs.aura.radio]. When working on any component, also check if this documentation has to be updated or extended.

Developer Installation

For Development the native installation as outlined in the README of individual repositories [https://code.aura.radio] recommended.

Docker Compose Deployments

For production we highly recommend to run AURA using Docker and Docker Compose as outlined in the Administration Guide. But also as a developer you can benefit from the ease of an Docker Compose installation. For example when developing some Engine feature, you may want to run AURA Web with Docker Compose while testing.

Prepare your Development Environment

It is recommended to clone all projects for example in such folder structure:

~code/aura/aura
~code/aura/steering
~code/aura/dashboard
~code/aura/engine
~code/aura/engine-api
~code/aura/engine-core
...

Order of configuration

After that, you need to configure the projects in following order:

Web Projects

	Steering [https://gitlab.servus.at/aura/steering] - Administration interface for schedules and programme information.

	Dashboard [https://gitlab.servus.at/aura/dashboard] - Frontend to manage schedules, program info and audio files.

	Tank [https://gitlab.servus.at/aura/tank] - Upload, pre-processing and storage of the audio files.

	…

Play-out Projects

	Engine Core [https://gitlab.servus.at/aura/engine] - Playout-engine to deliver the actual radio to the audience.

	Engine API [https://gitlab.servus.at/aura/engine] - API Server to provide playlogs and information for the studio clock.

	Engine [https://gitlab.servus.at/aura/engine] - Scheduling and remote control for the playout-engine.

	…

Configuring the OpenID Clients

Dashboard and Tank authenticate against Steering using OpenID. We use OpenID Connect (OIDC) [https://openid.net/connect/] to implement OpenID.

Check out the OIDC configuration page, on how to get them talk to each other.

Component Documentation

For more detailed documentation read the README files in the individual repositories.

You get an overview of all repositories at code.aura.radio [https://code.aura.radio].

Release Management

Semantic Versioning

Release names are defined according to the SemVer 2.0.0 [https://semver.org/] versioning scheme.

Semantic versioning of releases in CI/CD Pipelines

The chosen git tag will be the release name and the version of the Docker Image. Therefore the
pipeline script will enforce it to conform to Semantic Versioning 2.0.0 [https://semver.org/].

Keep a Changelog

For changelogs we use the format suggested by Keep a Changelog [https://keepachangelog.com/].
Try to follow best practices when writing the changelog. But remember, changelogs are for humans.
So do apply best practices when compiling your changelog.

The general AURA changelog is located in CHANGELOG.md.

Additionally, all individual service repositories hold their own changelog file. At each release
they are bundled in the aura/changelog directory.

Current Release

You can find available releases at releases.aura.radio [https://releases.aura.radio] or by
executing git tag.

Find releases of individual services in the Gitlab [https://code.aura.radio] repository page
under Deployments > Releases.

Release Workflow

Releasing a service

This release step is done by the repository maintainers.

To perform a service release do:

	Bump the version in the file holding the current version. Commit the version update.

	Release the version by running make release. This command tags and pushes the current branch.

As soon a version tag is pushed, the CI/CD Pipeline performs these steps:

	Create a GitLab release with the provided CHANGELOG.md as its release notes.

	Pushes the image to Docker Hub [https://hub.docker.com/u/autoradio].

	Build the Docker Image and automatically tags the release with latest and <release version>.

Releasing the AURA software bundle

The release of a complete software bundle is triggered from within the aura repository and
performed by the release manager.

Before the bundle can be released, the repository maintainers are informed about a code-freeze
in a timely manner and asked to review their changelogs and do releases of their individual services
(see ‘Releasing a service’ above).

Before proceeding also review the main AURA changelog in aura/CHANGELOG.md.

Preparing the release

	Create a new branch for the release: git checkout -b %VERSION%.

	In aura/CHANGELOG.md change the version identifier [Unreleased] to the release version and
add the current date.

	Bump the version of the aura repository with poetry version <version>.

	Update the versions of referenced services in the Docker Compose config/<docker compose>/sample.env
files and in .env.version.

	Update the configuration files and changelogs by running

make dev.prepare-release

This command pulls all configuration files and changelogs from the individual repos identified
by the versions in .env.version. The changlogs are stored .tmp and are merged into a file
named merged-CHANGELOG-%AURA_VERSION%.md

	Commit and push the branch.

Now inform the testers to check-out and test the given branch.

Performing the release

After the testers inform the product owner and development team, that the release criteria
is met, we can proceed.

In case developers have done any last minute bugfixes and re-released their services, ensure all
the configuration and changelog files are still up-to-date by executing

make dev.prepare-release

once more.

	Take the contents of .tmp/merged-CHANGELOG-%AURA_VERSION%.md and paste it into a new section
in docs/release-notes.md.

	Now we have to start thinking: What should be in the header of the release notes? Comprehend
what this release delivers, by checking the roadmap and contents of the changelog below.

	Review and commit the changes.

	Run

make dev.release

	Check out main and merge everything changed, except the version updates. They should remain
as unstable for services and Unreleased for AURA_VERSION. Alternatively cherry-pick the
relevant commits.

	Update CHANGELOG.md with a new template section for the next release.

	Push the changes to main.

	Delete the branch used for release preparation.

Misc

Table of contents

	OpenID Client Configuration

	API: Schedules and conflict resolution

	Default hosts and ports

OpenID Client Configuration

AURA is using OpenID [https://en.wikipedia.org/wiki/OpenID] for authentication and authorizing
access to restricted API endpoints.

More specifically we are using OpenID Connect (OIDC) [https://openid.net/connect/] for the OpenID handshakes.

Steering [https://gitlab.servus.at/aura/steering] is the central OpenID provider. All applications requesting access,
need to get an authorization from Steering.

Those applications are called OIDC clients.

Required OIDC Clients

In order to properly setup AURA, you’ll need to configure OpenID clients for Dashboard and Tank.

The registration and configuration steps below use the default hosts & ports.

In case of a Production Deployment you’ll probably have substitutions like following:

	Steering: localhost:8080 → aura-host.org/admin

	Dashboard: localhost:8000 → aura-host.org

	Tank: localhost:8040 → aura-host.org/tank

Registering clients at Steering

Registering OIDC clients on the command-line

First navigate to your Steering project location.

	Create an RSA Key

$ poetry run ./manage.py creatersakey

	Create OIDC client for Dashboard

$ poetry run ./manage.py create_oidc_client dashboard public -r "id_token token" -u https://localhost:8080/oidc_callback.html -u https://localhost:8080/oidc_callback_silentRenew.html -p https://localhost:8080/

Important: Remember to note the client id and secret for the configuration section below.

	Create OIDC client for Tank

$ poetry run ./manage.py create_oidc_client tank confidential -r "code" -u https://localhost:8040/auth/oidc/callback

Important: Remember to note the client id and secret for the configuration section below.

Registering OIDC clients via the admin interface

Follow these three steps to register Dashboard and Tank in the OpenID admin section of Steering.

Create an RSA Key

In the admin interface navigate to OpenID Connect Provider and generate a RSA Key.

Create OIDC client for Dashboard

Here you’ll need to choose following settings:

Client Type: Public
Response Type: id_token token (Implicit Flow)
JWT Algorithm: RS256
Require Consent?: No
Reuse Consent?: Yes

And enter these redirect URLs:

http://localhost:8080/static/oidc_callback.html
http://localhost:8080/static/oidc_callback_silentRenew.html

Note, that these URLs have to match exactly the
ones you configure in your .env.development or .env.production files here
in the dashboard source. This also means that if you use localhost in steering,
you must not put 127.0.0.1 or any aquivalent in your dashboard config, but
use exactly the same string (and vice versa).

Note the Client ID to use in your Dashboard config file.

TODO

Replace image with a current screenshot of Steering

Create OIDC client for Tank

Here you’ll need to choose following settings:

Client Type: Confidential
Response Type: code (Authorization Code Flow)
JWT Algorithm: RS256
Require Consent?: No
Reuse Consent?: Yes

And enter that redirect URL:

http://localhost:8040/auth/oidc/callback

Note the Client ID and secret to use in your Tank config file.

TODO

Replace image with a current screenshot of Steering

Setting the client configuration

When configuring a client, always remind yourself to use the actual hostname. When using the IP address for OIDC redirect URLs
you might get unexpected behaviour or being unable to authenticate at all.

Configuring Dashboard

In the Dashboard folder, edit your .env.production or .env.development respectively, and carefully review
if these URLs are matching the ones in the the Steering client settings. These URLs should match your Dashboard host:

VUE_APP_API_STEERING_OIDC_REDIRECT_URI = http://localhost:8080/oidc_callback.html
VUE_APP_API_STEERING_OIDC_REDIRECT_URI_SILENT = http://localhost:8080/oidc_callback_silentRenew.html

Then set the client id and secret, which you noted from the previous step:

VUE_APP_OIDC_CLIENT_ID = %YOUR_ID%

Additionally, confirm that your configured Steering URL and port is also matching the instance Steering is running at:

VUE_APP_API_STEERING_OIDC_URI = http://localhost:8000/openid

Configuring Tank

In the Tank configuration file tank.yaml replace ${OIDC_CLIENT_ID} and ${OIDC_CLIENT_SECRET} with your client ID and secret, or set the environment variables accordingly.

Also review the given URLS.

oidc:
 issuer-url: http://localhost:8000/openid
 client-id: ${OIDC_CLIENT_ID}
 client-secret: ${OIDC_CLIENT_SECRET}
 callback-url: http://localhost:8040/auth/oidc/callback

API: Schedules and conflict resolution

This document outlines handling conflict resolution using the API.

Find an overview of the API spec at api.aura.radio [https://api.aura.radio].

To learn about conflict resolution check out Timeslot Collision Detection in the User Guide.

Overview

Creating timeslots is only possible by creating/updating a schedule.

When creating/updating a schedule by giving the schedule data:

	Projected timeslots are matched against existing timeslots

	API returns an array of objects containing
2.1. the schedule’s data
2.2. projected timeslots (array of objects), including an array of found collisions (objects) and
possible solutions (array)

	To resolve, POST/PUT the "schedule" object and the "solutions" objects to
/api/v1/shows/{show_pk}/schedules/{schedule_pk}/

Create/update schedule

	To create: POST /api/v1/shows/{show_pk}/schedules/

	To update: PUT /api/v1/shows/{show_pk}/schedules/{schedule_pk}/

To start the conflict resolution POST/PUT the schedule object with key "schedule" containing:

	Variable

	Type

	Meaning

	byWeekday[1]

	int

	Weekday number: Mon = 0, Sun = 6

	rrule[1], [2]

	int

	Recurrence rule

	firstDate[1]

	date

	First date of schedule (e.g. “2017-01-01”)

	startTime[1]

	time

	Start time of schedule (e.g. “16:00:00”)

	endTime[1]

	time

	End time of schedule (e.g. “17:00:00”)

	lastDate[3]

	date

	Last date of schedule (e.g. “2017-12-31”)

	isRepetition

	boolean

	Whether the schedule is a repetition (default: false)

	defaultPlaylistId

	int

	A tank ID in case the timeslot’s playlistId is empty: What is aired if a single timeslot has no content? (default: null)

	show[1]

	int

	Show the schedule belongs to

	addDaysNo

	int

	Add a number of days to the generated dates. This can be useful for repetitions, like “On the following day” (default: null)

	addBusinessDaysOnly

	boolean

	Whether to add addDaysNo but skipping the weekends. E.g. if weekday is Friday, the date returned will be the next Monday (default: false)

	dryrun

	boolean

	Whether to simulate the database changes. If true, no database changes will occur, instead a summary is returned of what would happen if dryrun was false. (default: false)

Return

After sending the schedule’s data, the response will be in the form of:

{
 /* Projected timeslots to create. Array may contain multiple objects */
 "projected": [
 {
 "hash": "201801161430002018011616000041",
 "start": "2018-01-16 14:30:00",
 "end": "2018-01-16 16:00:00",
 /* Collisions found to the projected timeslot. Array may contain multiple objects */
 "collisions": [
 {
 "id": 607,
 "start": "2018-01-16 14:00:00",
 "end": "2018-01-16 15:00:00",
 "playlistId": null,
 "show": 2,
 "showName": "FROzine",
 "isRepetition": false,
 "schedule": 42,
 "memo": "",
 "noteId": 1 /* A note assigned to the timeslot. May not exist */
 }
],
 "error": "An error message if something went wrong. If not existing or empty, there's no problem",
 /* Possible solutions to solve the conflict */
 "solutionChoices": [
 "ours-start",
 "theirs",
 "ours",
 "theirs-start"
]
 },
 "solutions": {
 /* Manually chosen solutions by the user (if there's a key it has to have a value):
 Key is the hash of the projected timeslot while value must be one of 'solutionChoices' */
 "201801161430002018011616000041": ""
 },
 "notes": {
 /* To reassign an existing note to a projected timeslot, give its hash as key and the note id as value (may not exist) */
 "201801161430002018011616000041": 1
 },
 "playlists": {
 /* To reassign playlists to a projected timeslot, give its hash as key and the playlist id as value (may not exist) */
 "201801161430002018011616000041": 1
 },
 /* The schedule's data is mandatory for each POST/PUT */
 "schedule": {
 "rrule": 4,
 "byWeekday": 1,
 "show": 3,
 "firstDate": "2018-01-16",
 "startTime": "14:30:00",
 "endTime": "16:00:00",
 "lastDate": "2018-06-28",
 "isRepetition": false,
 "defaultPlaylistId": null,
 "automationId": null,
 "dryrun": false
 }
}

Solutions

The "solutionChoices" array contains possible solutions to the conflict.

To solve conflicts, POST the "schedule" and "solutions" objects to
/api/v1/shows/{show_p}/schedules/ or PUT to /api/v1/shows/{show_pk}/schedules/{schedule_pk}/
with "solutions" containing values of solutionChoices. Any other value will produce an error.

As long as there’s an error, the whole data structure is returned and no database changes will
occur. If resolution was successful, database changes take effect and the schedule is returned.

A Schedule is only created/updated if at least one timeslot was created during the resolution
process.

Maximum possible output:

"solutions": [
 "theirs",
 "ours",
 "theirs-start",
 "ours-start",
 "theirs-end",
 "ours-end",
 "theirs-both",
 "ours-both"
]

"theirs" (always possible)

	Discard projected timeslot

	Keep existing timeslot(s)

"ours" (always possible)

	Create projected timeslot

	Delete existing timeslot(s)

"theirs-start"

	Keep existing timeslot

	Create projected timeslot with start time of existing end

"ours-start"

	Create projected timeslot

	Change end of existing timeslot to projected start time

"theirs-end"

	Keep existing timeslot

	Create projected timeslot with end of existing start time

"ours-end"

	Create projected timeslot

	Change start of existing timeslot to projected end time

"theirs-both"

	Keep existing timeslot

	Create two projected timeslots with end of existing start and start of existing end

"ours-both"

	Create projected timeslot

	Split existing into two:

	Set existing end time to projected start

	Create another timeslot with start = projected end and end = existing end

Multiple collisions

If there’s more than one collision for a projected timeslot, only "theirs" and "ours" are
currently supported as solutions.

Errors

Possible error messages are:

Fatal errors that require the schedule’s data to be corrected and the resolution to restart

	"Until date mustn't be before start":
Set correct start and until dates.

	"Start and until dates mustn't be the same"
Set correct start and until dates. (Exception: Single timeslots with recurrence rule ‘once’ may
have the same dates)

	"Numbers of conflicts and solutions don't match":
There probably was a change in the schedule by another person in the meantime.

	"This change on the timeslot is not allowed."
When adding: There was a change in the schedule’s data during conflict resolution.
When updating: Fields start, end, byWeekday or rrule have changed, which is not allowed.

Conflict-related errors which can be resolved for each conflict:

	"No solution given":
The solutions value was empty or does not exist. Provide a value of solutionChoices

	"Given solution is not accepted for this conflict.":
The solution has a value which is not part of solutionChoices. Provide a value of
solutionChoices (at least "ours" or "theirs")

[1]
(1,2,3,4,5,6)
These parameters are required.

[2]
The full set of recurrence rules supported by default is loaded from the rrule.json
fixture.

[3]
If lastDate is not provided, timeslots will be generated until the end of the year
if AUTO_SET_LAST_DATE_TO_END_OF_YEAR is True, otherwise timeslots will be generated until
AUTO_SET_LAST_DATE_TO_DAYS_IN_FUTURE after the startDate and endDate will remain unset.

Default hosts and ports

Here you find the default hosts and ports for all AURA applications.

Development environment

	Component

	Host:Port

	Description

	steering

	localhost:8080

	Django Development Server

	dashboard

	localhost:8000

	VueJS Development Server

	dashboard-clock

	localhost:5000

	Svelte Development Server

	tank

	localhost:8040

	Go Development Server

	engine

	localhost:1337

	Network Socket for Liquidsoap

	engine-api

	localhost:8008

	Werkzeug Development Server

	engine-core

	localhost:1234

	Liquidsoap Telnet Server

	play

	localhost:5000

	Svelte Development Server

Release Notes

Here you find the release notes including all changes.

[1.0.0-alpha2] - 2023-06-29

The release of Alpha 2 - Precise Pheasant ships with plenty of essential improvements, both under
the hood and on the user interface level.

The Data Model has been extended and refined to provide a foundation for the requirements of
participating radios. Additional recurrence rules have been added as part of the default
configuration.

The User Interface has undergone a facelift and has been updated with features and enhancements,
especially in the calendar and show view.

Administrators are now served with log files for all services. In order to avoid permission errors,
also re-run the make aura-user.add command. This now creates directories for logs and audio
with correct permissions for the aura user.

Breaking Changes:

	Some configuration settings for the Docker Compose bundles have been changed. Either adapt
your current .env file accordingly or start with a fresh one.

	The API has been improved to follow best practices. This includes the naming of parameters
and properties.

Deprecated:

	Nested API endpoints in Steering and Tank are now deprecated. Try to migrate to the non-nested
version of an endpoint and report back if you are facing issues.

For more details, check out api.aura.radio [https://api.aura.radio] and the detailed changelog below.

Added

	aura: Add development target make dev.merge-changelog to create a merged changelog, helping to prepare release notes.

	aura: Add release notes section at docs.aura.radio [https://docs.aura.radio]

	aura: Add Tank Cut & Glue API to api.aura.radio [https://api.aura.radio/].

	aura: Add default Audio Store [https://docs.aura.radio/en/latest/administration/deployment-preparation.html#setting-up-the-audio-store] directory /var/audio/import used for audio file imports via filesystem (aura#172).

	aura: Add default setting for AURA_AUDIO_STORE_RECORDINGS to the playout sample.env file.

	aura: Add audio targets for the Makefile to start and disable PulseAudio.

	aura: Add optional engine-recorder profile to aura-playout.

	aura: Add an log file for NGINX, aura-web (#147).

	aura: Documentation: Add more details to the Radio Station Administration [https://docs.aura.radio/en/latest/user/station-administration.html] chapter.

	aura: Documentation: Add chapter on deleting and deactivating users in the User Guide.

	aura: Documentation: Add more info on switching between releases to the Administration Guide.

	aura: Add directories to logs and audio to avoid permission errors (#209)

	steering: Image concrete model to handle all instances.

	steering: API endpoint /api/v1/images/ to add, update and delete images.

	steering: Add Host admin

	dashboard: a new show selector to the navbar (#122, f9762d85).

	dashboard: a new image picker that can be used to upload new and select existing images (#89, #139, e0fd0a76, b335d801, 57e1e10f).

	dashboard: ability to add internal notes to a show (#146, 319cf540).

	dashboard: information on empty slots between shows and a progress indicator for the currently playing show

	dashboard: to the calendar day-view (#155, 9ac48a55, 2a68a7ac).

	dashboard: a progress indicator for the currently playing show to the calendar week-view (#156, b52672dd).

	dashboard: ability to add and remove individual contributors to the show notes based on the show owners (#170, #146, aa707763).

	dashboard: ability to add tags to show notes (#146, 560d8dda).

	engine: API responses from Steering and Tank are now cached in cache_dir

	engine-api: Test coverage (make coverage #40)

	engine-api: Badge displaying coverage result (#40)

Changed

	aura: Update sample configuration files for services in config/service/sample-config.

	aura: Rename environment variable AURA_ENGINE_SERVER_TIMEOUT to AURA_ENGINE_SERVER_TIMEOUT in playout sample.env.

	aura: Increase default value for AURA_ENGINE_SERVER_TIMEOUT in playout sample.env, to avoid malfunctions when idle (aura#165).

	aura: Documentation: Update Contribution Guidelines and Coding Conventions in the Developer Guide.

	aura: Documentation: Extend section for developers on performing releases.

	aura: Change /trackservice endpoints to /engine/api/v1/trackservice and /engine/api/v1/trackservice/current according to API namespace conventions (aura#190).

	steering: The Host, Note, Show models & serializers reference the new Image.

	steering: The logo field in the Show model is a reference to Image.

	steering: The “conflict resolution” methods of Schedule are now service functions.

	steering: Update all APIs to return attributes / properties in camelCase notation (aura#141)

	steering: Use _id suffix for all object reference in REST APIs (aura#166)

	steering: Use blank strings instead of nullable strings in REST APIs (aura#167)

	steering: Upgrade Poetry dependencies and Django to the next LTS version (steering#137)

	dashboard: The timeslot overview has been fully revised (4ef88279).

	dashboard: The timeslot show notes editor has been fully revised (#141, 57e1e10f).

	dashboard: Past schedules are now hidden in the show manager (#120, 8cd743de).

	dashboard: Schedules are now shown with their respective start and end date (#121, f9dc6fef).

	dashboard: The calendar day-view has been fully revised (#155, 9ac48a55, 2a68a7ac).

	dashboard: The slots in the calendar week-view have been from 30 to 15 minutes to make it easier to

	dashboard: create shorter slots (#151, 3fc47383).

	dashboard: Very short timeslots in the calendar week-view now take up less space (#151, 3fc47383, bfe7f813).

	dashboard: Show start and end time in calendar tooltip if the event is too short to render it as content (#173, cf5ac12e).

	dashboard: The show manager interface for editing the show details has been overhauled, changing the overall appearance

	dashboard: and the way some of the fields are edited (db7dc49d).

	dashboard-clock: Provide properties in API schemas in CamelCase notation (aura#141)

	engine: Provide properties in API schemas in CamelCase notation (aura#141)

	engine-api: Make properties in API schemas in CamelCase notation (aura#141)

	engine-api: Avoid deprecation warning by replacing JSON encoder (#35)

	engine-api: Change HTTP status codes (204 No Content) for successful but empty POST/PUT responses, adapt tests (#5)

	engine-core: Make properties in API schemas in CamelCase notation (aura#141)

	engine-core: Configuration: Renamed environment variable AURA_ENGINE_SERVER_TIMEOUT to AURA_ENGINE_SERVER_TIMEOUT

	engine-core: and configuration setting telnet_server_timeout to server_timeout.

	engine-core: Configuration: Increase default value for server_timeout, to avoid malfunctions when idle (aura#165)

Deprecated

	aura: Nested API endpoints in Steering and Tank are now deprecated. Compare the specification at api.aura.radio

Removed

	steering: The abstract ModelWithImageFields from the program models.

	steering: The ThumbnailsMixin from the program serializers.

	steering: The abstract ModelWithCreatedUpdatedFields from the program models.

	dashboard: Non-functional nav button to broadcast management on show detail page (#133, e4083e66).

	engine: Remove mail service as it will be replaced by Prometheus monitoring (engine#109)

Fixed

	aura: Fix an issue where make aura-user.add causes an unrelated Python error, raised from another command (#183).

	aura: Fix the location of the Docker Compose bundles in the README.

	aura: Fix an issue where /trackservice was not reachable (#159).

	aura: Fix an issue where some settings in the .env and .yml where not applied correctly (#160).

	aura: Fix an issue with the aura-playout targets in the Makefile (#168).

	aura: Documentation: Replace old “meta” repository references with “aura”.

	steering: use kebab-case in URLs

	steering: don’t output invalid PPOI format

	steering: note image should allow null values

	steering: don’t force REST API consumers to set repetition_of for timeslots

	steering: The timeslot generation leaves the last_date unset if it is null.

	steering: Note.tags attribute not updated via API (steering#157)

	steering: make subtitle field in Category a CharField

	dashboard: Navigation would sometimes freeze, after an application error in the playlists view (#132, e4083e66).

	dashboard: Calendar would sometimes crash if playlist data is missing (#132, a3e8e3b0).

	dashboard: Switching between the weekand day-view in the calendar no longer squishes the week-view (#153, e28eb4f7).

	dashboard: The calendar uses entire viewport height now (#154, 4c90f277).

	dashboard: Users are now able to create a timeslot in a calendar week slot that has already started (#167, 3d4e9b28).

	dashboard: HTML in the show title, short description and description is now correctly rendered (#129, 649b4c0b).

	engine: Fix an issue where the Engine version is displayed in the logs wrongly

	engine-api: Fix an issue where the configuration file is overwritten in the make init.dev target

	engine-api: Fix an issue where the Docker Compose healthcheck failed (#39)

	engine-api: Fix broken endpoint /trackservice (aura#185)

	engine-core: Telnet server sample config not working (engine-core#45).

	engine-core: Extend and improve output for make help.

	engine-recorder: Fixed a bug where the recorder would not start when trying to record a web stream (aura#182)

[1.0.0-alpha1] - 2023-03-02

Initial release.

Bug Reports

Tell us about your problems!

But please use the bug report template below.

Contact us via Matrix

You can find as on Matrix [https://matrix.aura.radio] which is also our primary channel for communication.

Create a ticket on GitLab

If you don’t have an Gitlab account, you can sign up here [https://gitlab.servus.at/users/sign_up].

	Head over to our GitLab instance at code.aura.radio [https://code.aura.radio].

	Search across all projects for existing tickets relevant to your issue.

	If something is available already, vote for it and place your comment.

	If nothing is available, first choose the relevant project. If you are unsure about the project, use the aura repository [https://gitlab.servus.at/aura/aura/-/issues]. Then file a new ticket.

Bug Reporting Template

It’s helpful if you structure your report similar to that template.

Title

summary describing your issue

Steps to Reproduce

 1. ...
 2. ...
 3. ...

Expected Result

...

Actual Result

...

Logs & configuration

- Contents of your `.env` or other configuration files. Keep in mind to remove any sensitive data like password, as the report will be visible publicly.
- Any errors in your browser console. In Firefox you can reach it by pressing `CTRL + SHIFT + K`, in Chrome or Chromium via `CTRL + SHIFT + J`.
- In case you are using your own Docker Compose override (`docker-compose.override.yml`), please share the file contents.
- The output of `docker-compose ps --all`, ensuring all services are started successfully.

Environment

optional details on your environment

Contributing to AURA

Code of Conduct

[image: Contributor Covenant]

We inherit the Contributor Covenant.

How can I contribute?

You don’t need to be a developer to contribute to the project.

	Join the AURA Matrix Space [https://matrix.to/#/#aura:freie-radios.de].

	Check out the source code and try AURA for yourself.

	Create bug reports, feature requests and provide thoughts in GitLab.

	Become an active developer or maintainer. To do so, check out the Developer Guide, especially the Coding Conventions.

	Provide sponsorship. We are happy to list you on the front page.

Contribution Guidelines

	Read up on our Developer Guide > Coding Conventions.

	When contributing code, create a Merge Request and assign the repository maintainer for review.

	We write changelogs in the keep a changelog [https://keepachangelog.com/] format. Update the CHANGELOG.md before committing code. Remember that changelogs are meant for humans and should reflect the end-user value.

	In case of big changes affecting several services and APIs it might be good to discuss that with the team beforehand. Think about doing a test deployment with all required services.

Contributors

	Code contributors can be found in the git logs.

	Martin Lasinger from Freies Radio Freistadt designed the AURA logos and icons.

	The foundation of Steering is based on Radio Helsinki [https://helsinki.at/]’s PV Module [https://git.helsinki.at/pv.git/] by Ernesto Rico Schmidt.

	The foundation of Engine is based on Comba [https://gitlab.janguo.de/freie-radios/comba], by Michael Liebler and Steffen Müller.

Partners and Sponsorship

Current partners

	Radio Orange 94.0 - Verein Freies Radio Wien [https://o94.at/]

	Radio Helsinki - Verein freies Radio Steiermark [https://helsinki.at/]

	Radio FRO - Freier Rundfunk Oberösterreich [https://www.fro.at/]

	Freies Radio Wüste Welle [https://wueste-welle.de/]

	Freies Radio Freistadt [https://www.frf.at/]

	Radio free FM [https://freefm.de/]

	FREIRAD Freies Radio Innsbruck [https://freirad.at]

Previous partners and sponsors

	Radiofabrik - Verein Freier Rundfunk Salzburg [https://radiofabrik.at/]

Licensing

By contributing your code you agree to these licenses and confirm that you are the copyright owner of the supplied contribution.

License

	Logos and trademarks of sponsors and supporters are copyrighted by the respective owners. They should be removed if you fork this repository.

	All source code is licensed under GNU Affero General Public License (AGPL) v3.0 [https://www.gnu.org/licenses/agpl-3.0.en.html].

	All other assets and text are licensed under Creative Commons BY-NC-SA v3.0 [https://creativecommons.org/licenses/by-nc-sa/3.0/].

These licenses apply unless stated differently.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
aura-dev (at) subsquare.at.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

Contributor Covenant is released under the Creative Commons Attribution 4.0
International Public License [https://github.com/EthicalSource/contributor_covenant/blob/release/LICENSE.md].

 [meta]: Hello, welcome, this is meta!
[you]: Oh, hi meta, what are you meta about?
[meta]: I am the place where all the work behind the 'real' work is happening.
[meta]: I collect stuff about the AuRa project and greet new visitors.
[you]: Ah, kool. Well... I am a new visitor, what can you tell me about this?
[meta]: **loading project overview info**
[meta]: Hello new visitor, here you go:

About AURA

What is this about? You probably already know. If not, here are some links
that explain in more detail what the community radio stations in .AT land and
.DE land are which call themselves Freie Radios (literally it would be
translated to free radios, but as the thing with free here is the same
as with free software [https://en.wikipedia.org/wiki/Free_and_open-source_software#Free_software]
in general).

Unfortunately most of those links are in German language as our constituency
is located primarily in Austria and German. We will provide a short intro
in English language as soon as we find some time.

About Freie Radios:

	http://freie-radios.at - Austrian association of community radio stations

	http://freie-radios.de - German association of community radio stations

	https://cba.fro.at - Podcast platform of Austrian community radio stations

	https://freie-radios.net - Audio portal of German community radio stations

	https://amarceurope.eu - European association of community radio stations

And what is this here now?

AuRa is a suite of radio management, programme scheduling and play-out
automation software that fits the needs of free radio stations. The initiative
took of in Austria, where several stations are still using and depending on
Y.A.R.M. (which is just yet another radio manager). Y.A.R.M. was an
awesome project that provided a software which was tailored to how
community radio stations create their diverse programmes. Unfortunately it
is also a piece of monolithic Java code that has come into the years.
Also it never really took of as a free software project and was depending on
a single developer. Today nobody really wants to touch its code anymore.

Now we urgently need something new, and all those other solutions out there
(FLOSS as well as commercial) do not really fulfill all our requirements.
Therefore we decided to pool our resources and develop something new, while
reusing a lot of work that has already been done at one or another station.

Matrix

You can get in touch and contribute via Matrix [https://matrix.org/] and
Element [https://element.io/]. This is our main communication channel.

Join the discussion at our Matrix Space and its main channels:

	AURA Matrix Space [https://matrix.aura.radio]

	AURA-general [https://matrix.to/#/#AURA-general:freie-radios.de]

	AURA-dev [https://matrix.to/#/#AURA-dev-meta:freie-radios.de]

	AURA-support [https://matrix.to/#/#aura-support:freie-radios.de]

	AURA-notifications [https://matrix.to/#/#AURA-notifications:freie-radios.de]

	AURA-offtopic [https://matrix.to/#/#AURA-offtopic:freie-radios.de]

Mailinglist

We sporadically share newsletters at the users (at) aura.radio Mailinglist.

Subscribing to the list

In order to subscribe send a mail with following content to majordomo (at) aura.radio:

subscribe users-aura-radio

Then follow the instructions for confirmation in the reply mail. Alternatively you can message
the development team directly via dev (at) aura.radio, and we will add you to the list.

Unsubscribing from the list

In order to unsubscribe send this to majordomo (at) aura.radio:

unsubscribe users-aura-radio

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/aura_fav96x96.png
AURA

_images/components.png
Program

scheduler (Steering)

2xPlayout server (Engine)

Mobile Apps.

B LiquidSoap Controller

2 Website. ot P

i 1

JSON ————JSON:
|
Useriianagement
Shows e Recorder
L Soneauing USoNy—»{ __Timasiots ’ e
— Conticmsnagement
e Jonomcements | o5
nerace
: Gy
y 53 @r il expor
S 22 fam
fi Importer Audio E 1> Tracksenice
e Uploa processing, - & EE
Playlist Management le- ‘writes if no signal

| i crsmeconkol |synem

H Raoraie

£ Sience

.% Setocor

0
RSS /JSON Import server (Tank) ‘switches if no signal

v
Music Player

| --Emergency program-

Bypasses playout and
~ switches to live studio’

Archive
server

((;0)

Silence.

Detector

WP3
Player

_static/aura-logo-grayscale-trans.png
AURa

nav.xhtml

 Table of Contents

 		
 AURA - Automated Radio

 		
 User Guide

 		
 Dashboard Overview

 		
 Login

 		
 Logout

 		
 Navigation Bar

 		
 User Profile

 		
 User Settings

 		
 Switch Language

 		
 Version

 		
 Show Planning

 		
 Show Management

 		
 Media Management

 		
 Programme Planning

 		
 Calendar & Schedule Management

 		
 Timeslot Collision Detection

 		
 Radio Station Administration

 		
 Manage Shows

 		
 Manage Metadata

 		
 Manage users and groups

 		
 Listing user groups

 		
 LDAP Authentication & Authorization

 		
 Generating reports

 		
 Studio Clock

 		
 Recurrence Rules

 		
 Administration Guide

 		
 Overview & Features

 		
 The naming scheme

 		
 Features

 		
 Migration & Integration Plan

 		
 Individual test & production instances

 		
 Migration Plan

 		
 Migration Tools

 		
 Deployment Scenarios

 		
 Single Instance

 		
 Advanced

 		
 High Availability

 		
 Deployment Preparations

 		
 Requirements

 		
 Setting up the home and aura user

 		
 Selecting the release

 		
 Setting up the Audio Store

 		
 Advanced Configuration

 		
 Deployment

 		
 Deployment Bundles

 		
 AURA Web

 		
 AURA Playout

 		
 AURA Recorder

 		
 AURA Web

 		
 Deploy AURA Web

 		
 Check the logs

 		
 NGINX and Reverse Proxy

 		
 Extending the settings for Steering

 		
 AURA Playout

 		
 Deploy AURA Playout

 		
 Playout channel routing

 		
 Configuring playout

 		
 Configure the audio source locations

 		
 Features and how they work

 		
 FAQ

 		
 AURA Recorder

 		
 Deploy AURA Recorder

 		
 Maintenance and updates

 		
 Update Containers

 		
 Update the database by applying migrations

 		
 Create OpenID Connect clients

 		
 Upgrade the database version

 		
 Overriding the docker-compose.yml

 		
 Useful docker and docker compose commands

 		
 Deploy other Docker Images

 		
 Developer Guide

 		
 Architecture

 		
 Architecural principals

 		
 Diagrams

 		
 Conflict Resolution for the scheduling timetable

 		
 Development

 		
 Coding Conventions and Guidelines

 		
 Developer Installation

 		
 Component Documentation

 		
 Release Management

 		
 Semantic Versioning

 		
 Keep a Changelog

 		
 Current Release

 		
 Release Workflow

 		
 Misc

 		
 OpenID Client Configuration

 		
 API: Schedules and conflict resolution

 		
 Default hosts and ports

 		
 Release Notes

 		
 [1.0.0-alpha2] - 2023-06-29

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Removed

 		
 Fixed

 		
 [1.0.0-alpha1] - 2023-03-02

 		
 Bug Reports

 		
 Contact us via Matrix

 		
 Create a ticket on GitLab

 		
 Bug Reporting Template

 		
 Contributing to AURA

 		
 Code of Conduct

 		
 How can I contribute?

 		
 Contribution Guidelines

 		
 Contributors

 		
 Partners and Sponsorship

 		
 Licensing

 		
 License

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Enforcement Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Enforcement Guidelines

 		
 1. Correction

 		
 2. Warning

 		
 3. Temporary Ban

 		
 4. Permanent Ban

 		
 Attribution

 		
 License

 		
 About AURA

 		
 Matrix

 		
 Mailinglist

 		
 Subscribing to the list

 		
 Unsubscribing from the list

